- Unmöglichkeitsbeweis
- (m)доказательство невозможности
Немецко-русский математический словарь. 2013.
Немецко-русский математический словарь. 2013.
Dreiteilung des Winkels — Unter der Dreiteilung des Winkels (auch: Trisektion des Winkels) versteht man in der Geometrie das Problem, ob man einen beliebigen Winkel nur mit Hilfe von Zirkel und Lineal (den euklidischen Werkzeugen) konstruktiv und präzise in drei gleich… … Deutsch Wikipedia
Endliche Galoiserweiterung — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia
Erweiterungskörper — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia
Galois-Erweiterung — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia
Galoissch — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia
Kochen-Specker-Theorem — Das Kochen Specker Theorem (KS Theorem) ist ein Satz aus dem Bereich der Grundlagen der Quantenmechanik, der die Unmöglichkeit eines nicht kontextuellen Modelles mit verborgenen Variablen der Quantenmechanik beweist. Neben der Bell schen… … Deutsch Wikipedia
Körpererweiterung — In der abstrakten Algebra ist ein Unterkörper K eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia
Körpererweiterung (Mathematik) — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia
Perfekter Körper — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia
Quadratur des Kreises — Das Quadrat und der Kreis haben den gleichen Flächeninhalt. Die Quadratur des Kreises ist ein klassisches Problem der Geometrie. Die Aufgabe besteht darin, aus einem gegebenen Kreis in endlich vielen Schritten ein Quadrat mit demselben… … Deutsch Wikipedia
Zerfällungskörper — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia